

WINTER-19 EXAMINATION MODEL ANSWER

Subject Name: WATER RESOURCES ENGINEERING

Subject Code:

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors etc should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking	Total
No.	Q.		Scheme	Marks
	N.			
Q.1		Attempt any Five of the following:		10
	a)	Define		
		i)Irrigation		
		ii) Runoff		
	Δns			
		i) Irrigation: Irrigation may be defined as the process of artificially supplying water to soil	1 M for	
		for full-fledged nourishment of the crops. OR	each	
		It is the science of artificial application of water to the land in accordance with crop	definition	
		requirements throughout the crop period.		
		ii) Runoff: The amount of water which flows over the surface of the earth after		
		considering all losses is called as runoff Runoff is expressed as in 'm' OR 'cm' or mm		
		considering an losses is called as ranon. Nation is expressed as in the OK effective		

Q.1	b)	Enlist the Classification of Irrigation on the basis of purposes.	
	Ans	 A. Single Purpose Irrigation Project: A project planned for one or single purpose is called as single purpose project e.g. Koyana project for hydropower, Gangapur project for irrigation etc. B. Multipurpose Irrigation Project: A project planned for more than one purpose is called as multipurpose project. e.g. Bhakra Nangal project for irrigation & hydropower generation, Jayakwadi project for irrigation & hydropower generation etc. 	2M for any classifi cation
		 A. Surface Irrigation: a) Flow Irrigation : i) Perennial Irrigation ii) Flood irrigation b) Lift irrigation: B. Sub-surface Irrigation: a) Natural Irrigation b) Artificial Irrigation (Note: Marks should be given to any type of classification) 	
0.1	c)	Define:	
Q.1	Ans	 i) C.C.A ii) G.C.A i) Culturable Command Area (C.C.A.): It is the net area which can be irrigated by a canal system. It includes all land on which cultivation is possible, though all area may not be under cultivation. ii) Gross command area (G.C.A.): It is the total area lying between drainage boundaries which can be irrigated by a canal system. It includes barren land, village, roads and area of habitation. 	1 M for each definition
0.1	d)	Define Spillway and Enlist types of spillway	
~.+	Ans	Spillway: It is the overflow portion of every dam , over which the surplus water flows from the upstream side of reservoir to the downstream side of reservoir. It is the safety valve of a dam. OR It is an arrangement provided at the crest of dam to expel the excess water rises above the full reservoir level.	1 M for definition
		Types of spillway :	&
		 Main / Service spillway Free fall or straight drop spillway. Ogee or overflow spillway Siphon spillway Side channel spillway Trough / Chute spillway Shaft spillway Conduit or Tunnel spillway 	1 Marks for types
		2. Subsidiary or Emergency Spillway	

Q.1	e)	Enlist the types of gates provided to reservoir.		
	Ans	A. Non-automatic Gates: i) Radial ot Taintor gate		
		ii) Vertical gate: 1) Sliding gate	1 M	
		2) Fixed gate	each	
		3) Stony gate	for	
		iii) Rolling gate	anv 4	
		B. Automatic Gate: i) Reynolds Gate	types	
		ii) Vishveshrayya gate	types	
Q.1	f)	Enlist the factors affecting on silting of reservoir.		
	Ans	a) Catchment area		
		b) Shape of catchment	1/2 M	
		c) Slope of country	each for	
		d) Nature of surface soil	any 4	
		e) Climatic conditions	factors	
		f) Rainfall characteristics		
		g) Vegetation cover		
0.4	,	h) Construction of check dam		
Q. 1	g)	State III effects of excess Irrigation		
	٨٥٥	a) Water logging		
	Alls	Water logging renders the soil infertile and useless for cultivation	¹ / ₂ M each	
		b) Salt efflorescence due to water logging	For	
		Salt efflorescence due to water logging damages the soil.	any 4	
		c) Breeding of mosquitoes	effects	
		Breeding of mosquitoes takes place due to over irrigation.		
		d) Damp climate		
		The climate becomes cold and damp due to over irrigation of an area. This dampness		
		in climate causes diseases such as malaria, dengue etc		
		e) Excessive humidity		
		Excess and intense irrigation may result in increasing the humidity of the area.		
		f) Ecological imbalance:		
		g) Water flooding in the crop root zone: Water flooding in the crop root zone causes		
		wilting of plants.		
Q.2		Attempt any THREE of the following		12
	a)	Describe in brief working of Symons rain gauge with neat labelled sketch.		
	, Ans	The most common type of non- recording rain gauges used in our country is the 'Symon's		
		raingauge'.		
		Working: A Symons Rain gauge consists of a cylindrical vessel of 127 mm internal diameter		
		with an enlarged base of 210 mm diameter. Inside the cylinder, a rain collecting bottle, made	2 M for	
		up of glass is placed. Over the top of this bottle, a glass funnel is inserted. The top section of	WORKING	
		the funnel is provided with a circular brass ring of exactly 127 mm diameter. With each	And	
		raingauge, a cylindrical graduated measuring glass is also provided. Each graduation of this		
		glass reads 0.2 mm. The reading should be read correctly upto 0.1 mm. The raingauge is set		
		upon a concrete block. The rim of the funnel should remain at least 305 mm above the		
		OUR CENTERS :		

round. The bottle collects the rain falling over the rim which is then measured by the measuring glass in 'mm' and 'tenth of mm' Funnel Funnel Get Collecting Collecting bottle Concrete block 600 × 600 Concrete block 6	ground. The bottle collec	ts the rain falling ove	er the rim which is then me		
measuring glass in 'mm' and 'tenth of mm' Funnel Funnel Metal container Collecting Baingauge A A A A A A A A A B Collecting Precipitation in mm A A A A A B Collecting Concrete block 600 × 600 Concrete block 600 × 600 Concrete block 600 × 600 A B B Co <t< th=""><th></th><td></td><td></td><td>easured by the</td><td></td></t<>				easured by the	
2 M for sketch with labelling Collecting GL Concrete block 600 × 600 Concrete block 600 × 600 Area of thiessens Area of thiessens A) Calculate Average annual rainfall Rain gauge Area of Diggon (A) A 45 Station A 45 C 30.8 A 32.6 C 24.6 C 24.6 C 20 C 20	measuring glass in 'mm' a	and 'tenth of mm'			
Concrete block 600×600 Concrete block $600 \times 600 \times 600$ and arithmetic mean methodRaingauge stationABCDArea of thiessens45383040Precipitation in mm30.834.632.624.6Area of thiessen's mm (P)Rain gaugeArea of thiessen's mm (P)A \times PA4530.813862 M eachB3834.61314.8forC3032.6978	GL 7.7.	Funnel Metal container Collecting bottle		-	2 M for sketch with labelling
Raingauge station A B C D Area of thiessens 45 38 30 40 polygon (sq.km) Precipitation in mm 30.8 34.6 32.6 24.6 A) Calculate Average annual rainfall Area of Thiessen's mm (P) A×P A×P Station Thiessen's mm (P) Polygon (A) 1386 A 45 30.8 1386 B 38 34.6 1314.8 C 30 32.6 978	Compute the average and arithmetic mean	Concrete block rainfall over the ca method	atchment by Thiessen's	polygon method	
Area of thiessens 45 38 30 40 polygon (sq.km) Precipitation in mm 30.8 34.6 32.6 24.6 A) Calculate Average annual rainfall Precipitation in mm (P) A×P A×P A×P Station Thiessen's mm (P) mm (P) 2 M each 6 1314.8 2 M each B 38 34.6 1314.8 6 1314.8 100 100 100	Raingauge station	A	ВС	D	
polygon (sq.km)30.834.632.624.6A) Calculate Average annual rainfallAArea of Precipitation in polygon (A)A × PA × PRain gaugeArea of Precipitation in polygon (A)Precipitation in Mm (P)A × PA × PA4530.813861386B3834.61314.8A each for heath	Area of thiessens	45	38 30	40	
Precipitation in min 30.8 34.6 32.6 24.6 A) Calculate Average annual rainfall A Area of Precipitation in P	polygon (sq.km)	20.9	24.6	24.6	
polygon (A) 2 2 2 M accord 2 M each for accord	A) Coloulate August				
A 45 30.8 1386 B 38 34.6 1314.8 for C 30 32.6 978 bath	A) Calculate Average an Rain gauge Station	Area of Thiessen's	Precipitation in mm (P)	A× P	
B 38 34.0 1314.8 for	A) Calculate Average an Rain gauge Station	Area of Thiessen's polygon (A)	Precipitation in mm (P)	A× P	
	A) Calculate Average an Rain gauge Station A	Area of Thiessen's polygon (A) 45	Precipitation in mm (P) 30.8	A× P 1386	2 M each
D 40 24.6 004 methods	A) Calculate Average an Rain gauge Station A B	Area of Thiessen's polygon (A) 45 38 20	Precipitation in mm (P) 30.8 34.6	A× P 1386 1314.8	2 M each for
D 40 24.6 984 Includes No of Stations ΣA = 153 Σ P = 122.6 ΣAP = 4662.8 Δ	A) Calculate Average an Rain gauge Station A B C	Area of Thiessen's polygon (A) 45 38 30 40	Precipitation in mm (P) 30.8 34.6 32.6 24.6	A× P 1386 1314.8 978	2 M each for both methods

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

c)	Expla	Explain the factors affecting Duty				
An	is 1)	Type of Crop: Different crops require different amount of water, and hence the duties for them are different.				
	2)	Duty will be less for a crop requiring more water and vice-versa Climate and Season: In hot season, the atmospheric temperature of the area becomes high, the evaporation loss is more hence duty gets reduced as crop requires more water.	1 M each for Any 4 factors			
	3)	Rainfall: More the rainfall less will be the requirement of irrigation water, and hence more will be the duty.				
	4)	Type of Soil: If soil is permeable, water lost due to percolation will be more, hence duty will be less and vice-versa.				
	5)	Method of Irrigation: If method of irrigation is not proper i.e. in case of free flooding, wastage of water will be more and hence less duty.				
	6)	Canal condition: Canal should be kept in proper condition by proper maintenance and lining, which will reduce the seepage, leakage and thus increase the duty.				
	7)	Mode of Assessment: The tendency of using more water can be checked by adopting volumetric assessment which gives more duty than area wise				
	8)	Method of tilling (cultivation): If proper method of tilling is adopted there will be less wastage of water, thus duty is more.				
d)) Expla	in in brief Engineering surveys carried out for reservoir planning.				
An	ns In En surve Purp map The c	gineering survey, various type of surveys such as plane table survey, traverse ey, aerial and photographic surveys etc. are carried out . ose or Aim of engineering survey : To prepare Contour map and Topographical of the site. contour interval may be taken as 1 to 3 m for fairly plain area, and 5 to 10 m	2 M for purpose or aim			
	for h For D than Horiz	illy area. Dam site careful triangulation survey is required where contour interval is less 1 m. contal scale may be 1 in 500 to 1 in 1000.				
	From	ssary information from contour plan:				
		OUR CENTERS :				

	elevation may be directly determined by measuring the area with help of		
	planimeter.		
	Following information can be obtained from contour map.	2 M for	
	1. Water spread area from Area-elevation curve	n	
	2 Arrangement of lines of communication	(Anv 2	
	2. Capacity of reconvoir from storage elevation curve	points)	
	5. Capacity of reservoir from storage elevation curve.	• •	
	4. Site for waste weir and outlets.		
	5. Suitable dam site.		
	From the contour map, the storage capacity of the reservoir should be fixed by		
	assuming the height of the dam. Then the valuable land and properties which may		
	get submerged in the reservoir can be found out.		
. 3	Attempt any THREE of the following		12
a)	State the reasons for which elementary profile of dam is not possible to construct in		
- ,	practice.		
Ans			
	Reasons:		
	a) For constructing a road at the top of dam, provision of top width is		
	must but the shape of elementary profile is right angle triangle.	1 M	
	b) Free board is essential to be kept to avoid spillage of water over the	for 4	
	body of dam but in elementary profile, there is no provision for free	reasons	
	board.		
	c) In elementary profile, only pressure due to water and self-weight is		
	prossure ice prossure unlift prossure wind prossure tail water		
	pressure are neglected		
	d) In elementary profile the provision of drainage galleries is not		
	considered		
b)	Draw a labelled sketch of Earthen dam		
~,			
	Parapet wall (30cm thick)		
	-TBL turfing	2 M for	
	▼ HFL Drain	sketch	
	Stone nitching		
	LSL II TW II A Rock toe		
	Hearting	&	
	Pitching toe		
		2M for	
	Stripping cut off trench in sandy pervious soil	labelling	
	Plane of		
	maximum shear Clay as fill		

Contact - 9136008228

c)	Differentiate between earthen dam and gravity dam with respect to seepage, foundation, construction and maintenance				
Ans	Parameters	Earthen dam	Gravity dam		
	Seepage	More seepage	Less seepage	1 M for	
	Foundation	Suitable almost on any	Suitable only when foundation is	each	
		foundation	of solid rock having no fissures ,	parameter	
			cracks, cavities etc.		
	Construction	Construction materials are	Construction materials are stone,		
		stone, earth containing silt,	brick .Concrete etc		
		clay and sand.			
	Maintenance	More costly	Less costly		
d) Ans	 Explain the require 1) The bed of tand then joir 2) There should the comman 3) The nalla or s 4) The flanks or 5) Construction site. 6) A good agr irrigating the 	ement of site for percolation tank should be pervious so in the ground water table. d be sufficient number of we d area. stream should have sufficien in the both sides of the nalla s in material , labour, machiner icultural land should be a e crops.	that the water will percolate ells and bore wells existing in t discharge in monsoon. hould rise with steep slope. should be available near the vailable near each well for	1 M each for any 4 points	
Q. 4	Attempt any THR	EE of the following			12
a) Ans	State the necessity Necessity: 1) Drip irrigati a plant. 2) This metho 3) It enables a 4) It ensures of	and advantages of Drip irrig ion is application of water, at d is very useful in arid region application of fertilizers along potimal growth better fruitin	a very slow rate, to the root zone of s where water is scarce. with irrigation water.	1 M each for any 2 necessitie s	
	quantity of 5) It is applica closely space	water ble to a variety of row crops ced vegetable crops	– from widely spaced fruit crops to		
	(i) It eliminat (ii) It requires (iii) Frequent (iv) It is best r (v) It is very t	tes evaporation losses. s less water to mature a crop ploughing is not required. nethod of irrigation with gro useful in reclaiming and deve	und water in arid zones. loping desert area.	½ M each for any 4 advantages	

b)	Discuss the different activities undertaken under Jalyukt Shivar Abhiyan		
Ans	Jalyukt Shivar Abhiyan was launched by Maharashtra Government in 2015 in a bid to make Maharashtra draught free by 2019. The main aim of the project is to provide relief to farmers of draught affected areas of Maharashtra. It includes checking the problems and implementing new water conservation and irrigation techniques.	2 M for descriptio ns 1 M each	
	 Deepening and widening of streams. Construction of earthen and cement stop dams Work on nullahs Digging of Farm Ponds 	for any 2 activities	
c) Ans	Enlist types of weir and explain any one in detail. Types of weirs are a) Based on materials of construction 1) Masonry weir 2) Rock-fill weir 3) Concrete weir b) Based on use and function 1) Storage weir 2) Pick-up weir 3) Diversion weir 4) Waste weir (c) Based on design 1) Gravity weir 2) Non gravity weir	2 M each for any 2 types of weirs	
	 Masonry Weir It consists of a vertical drop wall or crest wall with or without crest gates and an impervious floor Cut off piles are provided at the upstream and downstream ends of the impervious floor Aprons are also provided at both upstream and downstream side to prevent scouring The raised masonry crest does the most ponding and a small part is done by the crest shutter These weirs are suitable on any foundation Rock fill weir This weir consists of a body wall and dry stones are laid on the upstream and downstream side It requires large quantity of stones These weirs are unsuitable for soft foundation where difference between weir crest and downstream river bed does not exceed 3m An example of this type of weir is Okhala weir on Yamuna river near Delhi 	2 M for explanatio n	

	 Concre i. This ii. Wh glad iii. The 4. Pick-up i. It is ii. It is to r iii. Pick 	ete Weir s is comparatively new type of weir en water passes over it, hydraulic jump cis to dissipate energy of flowing water ey are exclusively used nowadays, espec o Weir a solid weir with crest gates constructed constructed some distance downstreau aise the water level upto FSL of canal c-up weirs are constructed under follow	is formed on the downstream ially on permeable foundations ed in concrete or stone masonry m of dam to form a large reservoir ring situations:	
		 b) Canal has to run idle c) The terrain is geographically difficul costly or impossible 	It so that canal alignment is very	
d) Ans	Different	iate between weir and barrage		
	5. NO.	vveir	Initial cost of barrage is high	
	2	Area of submergence is more due to large afflux.	Area of submergence less due to less afflux	
	3	Due to crest there is problem of silting	There is good control over silt entry into canal.	for
	4	The raising and lowering of shutter is not convenient it requires more time and labour as it is done manually.	The raising and lowering of gate is convenient as it can be operated mechanically	any 4 points
	5	The control over flood is not possible.	There is good control over flood situation.	
	6	It is difficult to inspect and repair.	These provide better facilities for inspection and repair of various structures	
	7	Roadway is not possible across river	Road way can be provided across the river	
	•	Storage of water is done by crest and	In harrage most of water storage is	

e	e)	Draw a layout of diversion headwork		
A	ns			
		Head Divide wall Head Divide wall Head Divide wall Jocket Jocket Jocket Jocket Jocket Jocket Jocket Jocket	2 M for correct sketch and 2 M for correct labelling	
Q.5		Attempt any TWO of the following		12
a) A a)) (i) Ins	Calculate the MFD from catchment area 950 km ² . Use Dicken's formula (Assume C=24) Given: $A = 950 \text{ km}^{2}$ $C = 24$ Solution: $Q = C \times A^{(3/4)}$ $= 24 \times 950^{(3/4)}$ $= 4106.80 \text{ m}^{3}/\text{sec}$ Answer: MFD = 4106.80 m ³ /sec Explain any three factors affecting runoff.	1M each for correct formula, substituti on and answer	
		 1. Rainfall characteristics: a. More the rainfall, runoff will be more. b. More the intensity of rainfall more will be the runoff. 2. Topography: a. It depends upon smoothness and roughness of the surface b. Steep slopes – Heavy runoff will reach the valley quickly, reducing losses giving more runoffour CENTERS : 	1M each for any 3 factors	
		losses giving more runoff OUR CENTERS : KALYAN DOMBIVLI THANE NERUL DADAR	Page	No.10

	c. If catchment is mountainous, runoff will be more		
	d. If catchment is in windward direction, runoff will be more		
	3. Shape and size of catchment:		
	a. Catchment area – Larger the area, more runoff.		
	b. Fan shaped catchment gives greater runoff.		
	4. Characteristics of catchment :		
	a. Rocky strata – heavy runoff		
	b. Compacted strata - heavy runoff		
	c. Sandy strata – reduced runoff		
	d. Cultivated area - less runoff		
	e. Presence of vegetation covers reduces the runoff during smaller storm.		
	5. Meteorological characteristics :		
	a. Low temperature – greater runoff		
	b. High temperature– less runoff		
	6. Geological characteristics :		
	a. Pervious soil – less runoff		
	b. Porous and fissure rock – very low surface runoff		
b)	Derive relation between duty and delta		
Ans	Let, D – Duty in hectares / cumec		
	Δ - Delta for crop in meter		
	B – Base period of crops in days		
	If 1 cumec flowing for base period (B) and irrigates field of (D) hectares then total		
	volume is given by,		
	Volume = 1 x (24 x 60 x 60) B m3	2 M	
	$= 8.64 \times 10^4 \times B$ cubic m	2	
	Volume calculated from delta Δ cm of depth required in base period		
	Volume = $\Delta \times 10^4$ and for D hectares		
	Volume = $10^{+} \times \Delta \times D$ cubic m		
	Equating above equations,	2 M	
	$T X (74 X PO X PO) R = TO_X T X T X D$		
	Therefore		
	8.64 B		
	$\therefore \mathbf{D} = \frac{\mathbf{D} \cdot \mathbf{D} + \mathbf{D}}{\mathbf{A}}$	2 M	
		2 191	
	1		

Salaran . IVAN IN

c)	Fix the full reservoiri)Dead storagii)Crop wateriii)Tank lossesiv)Free board =	r level (FF e level = requirem = 1500 m = 1.5 m	L) and Top 112 m ent = 8500 3	of Dam leve m ³	el (TDL) fron	n the follo	wing data:		
	v) Flood lift = 1.6 m								
	Control R. L. (m)	112	114	116	118	120	122		
	Capacity (m ³)	1000	2900	5000	6000	9000	12000		
Ans	Effective live stor	age = 85	00 m ³						
	Tank losses	= 15	00 m ³						
	Total live storag	e = Ef	fective live	storage + T	ank losses				
		= 85 = 10	500 +1500 000 m ³						
	Dead storage = 1	.000 m ³	correspon	ding to RL 1	.12)			1M	
	Gross storage = 1	10000 m [:]	³ + 1000 m ³	3	X				
	_ 1	1000 m ³			Cr			1 M	
		1000 m		6				1.01	
	(FRI = 120 +	122 – 12	0) (11000 -	- 9000)					
		(1200	0 – 9000)	Ň					
	= 120 + 1.3 FRI = 121.33 m	33 1						1 M	
			O^{γ}						
	HFL = FRL + flo	od lift							
	- 121.35 '	1.0							
	HFL = 122.93 n	n						2 M	
	TDL = HFL + fre	e board							
	= 122.93 +	1.5							
	TDL = 124.43							1M	

ENGINEERING

b)	Design economical trapezoidal section of canal to carry 30m ³ /sec of water with bed slope 1 m. per km and side slope 3H:2V. Take N=0.012.						
Ans	Given: Q = 30 m ³ /sec S = 1/1000 n = H/V = 3/2 = 1.5 N = 0.012						
	For most economical channel, 1. $R = d/2$ 2. $b + 2nd = 2d\sqrt{(1 + n^2)}$ Substituting the value of n in the second condition $b + 2 \times 1.5 d = 2d \sqrt{(1 + 1.5^2)}$ b + 3d = 3.605d b = 0.605d	1М					
	Area = $bd + nd^2$ = 0.605 $d^2 + 1.5d^2$ Area = 2.105 d^2						
	Velocity (v) = $1/N \times R^{2/3} \times S^{1/2}$ = $(1/0.012) \times (d/2)^{2/3} \times (1/1000)^{1/2}$ Velocity (v) = $1.66d^{2/3}$						
	Substituting the values of Q, A and v in the equation for discharge $Q = A \times v$ $30 = 2.105d^2 \times 1.66d^{2/3}$ $30 = 3.49 d^{8/3}$ $30 / 3.49 = d^{8/3}$ $8.596 = d^{8/3}$ Hence	1M					
	d = 2.24 m b = 0.605 d = 0.605 x 2.24						
	b = 1.35 m						

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228